k-gon partitions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MACMAHON’S PARTITION ANALYSIS IX: k-GON PARTITIONS

MacMahon devoted a significant portion of Volume II of his famous book “Combinatory Analysis” to the introduction of Partition Analysis as a computational method for solving combinatorial problems in connection with systems of linear diophantine inequalities and equations. In a series of papers we have shown that MacMahon’s method turns into an extremely powerful tool when implemented in comput...

متن کامل

k-Efficient partitions of graphs

A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...

متن کامل

Minimum-Perimeter Enclosing k-gon

Introduction Let P = p1, . . . , pn be a simple polygon (all polygons are assumed convex throughout this paper). A fundamental problem in geometric optimization is to compute a minimum-area or a minimum-perimeter convex k-gon (denoted QA or Qp, resp.) that encloses P . While efficient algorithms for finding QA are known for more than 20 years [8, 1, 2], the problem of finding Qp has remained op...

متن کامل

Robustness of k-gon Voronoi diagram construction

In this paper, we present a plane sweep algorithm for constructing the Voronoi diagram of a set of non-crossing line segments in 2D space using a distance metric induced by a regular k-gon and study the robustness of the algorithm. Following the algorithmic degree model [G. Liotta, F.P. Preparata, R. Tamassia, Robust proximity queries: an illustration of degree-driven algorithm design, SIAM J. ...

متن کامل

ON k-NONCROSSING PARTITIONS

In this paper we prove a duality between k-noncrossing partitions over [n] = {1, . . . , n} and k-noncrossing braids over [n − 1]. This duality is derived directly via (generalized) vacillating tableaux which are in correspondence to tangled-diagrams [6]. We give a combinatorial interpretation of the bijection in terms of the contraction of arcs of tangled-diagrams. Furthermore it induces by re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2002

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700020761